Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176264

RESUMO

BACKGROUND: Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN: Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE: The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS: Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT: JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION: JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Diurese , Biomarcadores , China
2.
Toxics ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251005

RESUMO

Polychlorinated biphenyls (PCBs) are organic chemicals consisting of a biphenyl structure substituted with one to ten chlorine atoms, with 209 congeners depending on the number and position of the chlorine atoms. PCBs are widely known to be endocrine-disrupting chemicals (EDCs) and have been found to be involved in several diseases/disorders. This study takes various molecular descriptors of these PCBs (e.g., molecular weight) and toxicity endpoints as molecular activities, investigating the possibility of correlations via the quantitative structure-toxicity relationship (QSTR). This study then focuses on molecular docking and dynamics to investigate the docking behavior of the strongest-binding PCBs to nuclear receptors and compares these to the docking behavior of their natural ligands. Nuclear receptors are a family of transcription factors activated by steroid hormones, and they have been investigated to consider the impact of PCBs on humans in this context. It has been observed that the docking affinity of PCBs is comparable to that of the natural ligands, but they are inferior in terms of stability and interacting forces, as shown by the RMSD and total energy values. However, it is noted that most nuclear receptors respond to PCBs similarly to how they respond to their natural ligands-as shown in the RMSF plots-the most similar of which are seen in the ER, THR-ß, and RAR-α. However, this study is performed purely in silico and will need experimental verification for validation.

3.
Sci Total Environ ; 907: 167943, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863219

RESUMO

The consistent population growth is directly tied to the annual rise in livestock production, placing a substantial burden on the crop sector that supplies animal feed. The Danish government has been relying on importing soybeans and soybean meal to be used as animal feed. However, this sparked environmental concerns that require more environmentally friendly solutions, such as self-sufficiency in animal feed production. The rise of green biorefineries allows new avenues of animal proteinaceous feed production using green biomass to produce leaf protein concentrate (LPC) and utilize side-stream products, such as brown juice and press cake, for feed-quality products. This study evaluated the combination of grass-clover biorefinery and the power-to-X concept, including power-to-protein technology, for its environmental sustainability through a consequential life cycle assessment (CLCA). The production of protein concentrate from organic grass clover exhibits optimal environmental performance when press cake and brown juice are used for bioenergy recovery. The findings indicate that combining a green biorefinery with power-to-protein to fully valorize the carbon and nitrogen content of brown juice and press cake into feed-grade protein can increase the environmental benefits. Such an integration resulted in an avoided impact of -995.9 kg CO2-eq/tonne of protein concentrate. The avoided impacts of climate change could be higher within the first 20 years due to a higher carbon sequestration rate. However, even after 20 years when a new carbon balance in the soil is reached, the environmental gain could be big enough to encourage the production and use of organic grass-clover protein concentrate.


Assuntos
Meio Ambiente , Soja , Animais , Ração Animal/análise , Poaceae , Tecnologia , Carbono
4.
Toxics ; 11(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38133390

RESUMO

Titanium dioxide is a compound that is used in the food, cosmetic, and paint industries; however, it is still toxic to humans and the environment. This study determined the toxicities of titanium dioxide nanoparticles (TiO2 NPs) in a Caenorhabditis elegans (C. elegans) model. The effects of commercially available (C-TiO2) and synthetically (S-TiO2) prepared TiO2 NP solutions on lethality, lifespan, growth, reproduction, locomotion, and gene expression were studied in C. elegans. Exposure to TiO2 NPs (0.0, 0.01, 0.1, 1.0, and 10 mg/L) did not result in any change to the survival rate or body length of the nematodes, regardless of the concentration. However, there was a decrease in the reproduction (brood size) and locomotion (body bending and head thrashing) of the nematodes as the TiO2 NP concentration increased. The longevity of the nematodes was shortened following TiO2 NP exposure. The gene expression of sod-1, sod-3, ctl-1, ctl-2, cyp35A2, mlt-1, and mlt-2 in the nematodes showed that there was an overexpression of all genes when the worms were exposed to 1 mg/L C-TiO2 or 10 mg/L S-TiO2. It was therefore concluded that compared with S-TiO2, C-TiO2 possibly causes more toxicity or genotoxicity in the C. elegans model.

5.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959677

RESUMO

Diabetes is a chronic metabolic disease characterized by improperly regulating proteins, carbohydrates, and lipids due to insulin deficiency or resistance. The increasing prevalence of diabetes poses a tremendous socioeconomic burden worldwide, resulting in the rise of many studies on Chinese herbal medicines to discover the most effective cure for diabetes. Sesame seeds are among these Chinese herbal medicines that were found to contain various pharmacological activities, including antioxidant and anti-inflammatory properties, lowering cholesterol, improving liver function, blood pressure and sugar lowering, regulating lipid synthesis, and anticancer activities. These medicinal benefits are attributed to sesamin, which is the main lignan found in sesame seeds and oil. In this study, Wistar rat models were induced with type 2 diabetes using streptozotocin (STZ) and nicotinamide, and the effect of sesamin on the changes in body weight, blood sugar level, glycosylated hemoglobin (HbA1c), insulin levels, and the states of the pancreas and liver of the rats were evaluated. The results indicate a reduced blood glucose level, HbA1c, TG, and ALT and AST enzymes after sesamin treatment, while increased insulin level, SOD, CAT, and GPx activities were also observed. These findings prove sesamin's efficacy in ameliorating the symptoms of diabetes through its potent pharmacological activities.


Assuntos
Diabetes Mellitus Tipo 2 , Lignanas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Lignanas/farmacologia , Lignanas/uso terapêutico , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Insulina , Extratos Vegetais
6.
Brain Sci ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38002524

RESUMO

Neurocognitive impairment refers to a spectrum of disorders characterized by a decline in cognitive functions such as memory, attention, and problem-solving, which are often linked to structural or functional abnormalities in the brain. While its exact etiology remains elusive, genetic factors play a pivotal role in disease onset and progression. This study aimed to identify highly correlated gene clusters (modules) and key hub genes shared across neurocognition-impairing diseases, including Alzheimer's disease (AD), Parkinson's disease with dementia (PDD), HIV-associated neurocognitive disorders (HAND), and glioma. Herein, the microarray datasets AD (GSE5281), HAND (GSE35864), glioma (GSE15824), and PD (GSE7621) were used to perform Weighted Gene Co-expression Network Analysis (WGCNA) to identify highly preserved modules across the studied brain diseases. Through gene set enrichment analysis, the shared modules were found to point towards processes including neuronal transcriptional dysregulation, neuroinflammation, protein aggregation, and mitochondrial dysfunction, hallmarks of many neurocognitive disorders. These modules were used in constructing protein-protein interaction networks to identify hub genes shared across the diseases of interest. These hub genes were found to play pivotal roles in processes including protein homeostasis, cell cycle regulation, energy metabolism, and signaling, all associated with brain and CNS diseases, and were explored for their drug repurposing experiments. Drug repurposing based on gene signatures highlighted drugs including Dorzolamide and Oxybuprocaine, which were found to modulate the expression of the hub genes in play and may have therapeutic implications in neurocognitive disorders. While both drugs have traditionally been used for other medical purposes, our study underscores the potential of a combined WGCNA and drug repurposing strategy for searching for new avenues in the simultaneous treatment of different diseases that have similarities in gene co-expression networks.

7.
J Taiwan Inst Chem Eng ; 147: 104898, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193294

RESUMO

Background: Jing Guan Fang (JGF) is an anti-COVID-19 Chinese Medicine decoction comprised of five medicinal herbs to possess anti-inflammatory and antiviral properties for treatment. This study aims to electrochemically decipher the anti-coronavirus activity of JGF and show that microbial fuel cells may serve as a platform for screening efficacious herbal medicines and providing scientific bases for the mechanism of action (MOA) of TCMs. Methods: Electrochemical techniques (e.g., cyclic voltammetry) and MFCs were adopted as the bioenergy-based platforms to assess the bioenergy-stimulating characteristics of JGF. Phytochemical analysis correlated polyphenolic and flavonoid content with antioxidant activity and bioenergy-stimulating properties. Network pharmacology on the active compounds was employed to identify anti-inflammatory and anti-COVID-19 protein targets, and molecular docking validated in silico results. Significant findings: This first-attempt results show that JGF possesses significant reversible bioenergy-stimulation (amplification 2.02 ± 0.04) properties suggesting that its antiviral efficacy is both bioenergy-steered and electron mediated. Major flavonoids and flavone glycosides identified by HPLC (e.g., baicalein and baicalin, respectively) possess electron-shuttling (ES) characteristics that allow herbal medicines to treat COVID-19 via (1) reversible scavenging of ROS to lessen inflammation; (2) inhibition of viral proteins; and (3) targeting of immunomodulatory pathways to stimulate the immune response according to network pharmacology.

8.
J Bioinform Comput Biol ; 21(1): 2250029, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36775260

RESUMO

The World Health Organization (WHO) declared breast cancer (BC) as the most prevalent cancer in the world. With its prevalence and severity, there have been several breakthroughs in developing treatments for the disease. Targeted therapy treatments limit the damage done to healthy tissues. These targeted therapies are especially potent for luminal and HER-2 positive type breast cancer. However, for triple negative breast cancer (TNBC), the lack of defining biomarkers makes it hard to approach with targeted therapy methods. Protein-protein interactions (PPIs) have been studied as possible targets for drug action. However, small molecule drugs are not able to cover the entirety of the PPI binding interface. Peptides were found to be more suited to the large or flat PPI surfaces, in addition to their better pharmacokinetic properties. In this study, computational methods was used in order to verify whether peptide drug inhibitors are good drug candidates against the ubiquitin protein, UBE2C by conducting docking, MD and MMPBSA analyses. Results show that while the lead peptide, T20-M shows good potential as a peptide drug, its binding affinity towards UBE2C is not enough to overcome the natural UBE2C-ANAPC2 interaction. Further studies on modification of T20-M and the analysis of other peptide leads are recommended.


Assuntos
Neoplasias , Peptídeos , Peptídeos/farmacologia , Desenho de Fármacos , Proteínas
9.
Ind Crops Prod ; 191: 115944, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36405420

RESUMO

Due to the pandemics of COVID-19, herbal medicine has recently been explored for possible antiviral treatment and prevention via novel platform of microbial fuel cells. It was revealed that Coffea arabica leaves was very appropriate for anti-COVID-19 drug development. Antioxidant and anti-inflammatory tests exhibited the most promising activities for C. arabica ethanol extracts and drying approaches were implemented on the leaf samples prior to ethanol extraction. Ethanol extracts of C. arabica leaves were applied to bioenergy evaluation via DC-MFCs, clearly revealing that air-dried leaves (CA-A-EtOH) exhibited the highest bioenergy-stimulating capabilities (ca. 2.72 fold of power amplification to the blank). Furthermore, molecular docking analysis was implemented to decipher the potential of C. arabica leaves metabolites. Chlorogenic acid (-6.5 kcal/mol) owned the highest binding affinity with RdRp of SARS-CoV-2, showing a much lower average RMSF value than an apoprotein. This study suggested C. arabica leaves as an encouraging medicinal herb against SARS-CoV-2.

10.
J Ethnopharmacol ; 305: 116084, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36584922

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ji-Ming-Shan (JMS) is a traditional herbal prescription consisting of seven herbs including Areca cathechu Burm.f., Citrus reticulata Blanco, Chaenomeles speciosa (Sweet) Nakai, Euodia ruticarpa (A. Juss.) Benth., Perilla frutescens (L.) Britton, Zingiber officinale Roscoe, Platycodon grandiflorus (Jacq.). It was first recorded during the Song dynasty and has been used extensively for protection against rheumatism, treatment of swelling of tendons, relief from foot pain, gout and diuresis and other forms of inflammation. AIM OF THE STUDY: The aim of this study is to evaluate the anti-inflammatory and anti-osteoarthritis activity of JMS extracts with the use of different cell lines (RAW 264.7 cells, SW1353 cells and primary cultured rat chondrocytes). MIA-induced rat animal models were used to assess the anti-osteoarthritis activity of the extract. MATERIALS AND METHODS: This study investigated the anti-inflammatory activity of JMS-95E on LPS-induced RAW 264.7 macrophages and IL-1ß-stimulated chondrocytes. For the in vivo study, male Wistar rats were used and they were randomly assigned in different groups: blank, control, positive control and three different JMS-95E treatment groups (200, 400, 800 mg/kg/d). Paw edema, hind-limb weight bearing, serum inflammatory cytokines including hematoxylin and eosin (HE) staining experiments were used to assess the efficacy of the extract in the rat model. RESULT: JMS 95% ethanol extract (JMS-95E, marker substance: narirutin (5.10 mg/g) and hesperidin (11.33 mg/g) has been identified in the extract using high pressure liquid chromatography. For in vitro assays, JMS-95E did not exhibit cytotoxicity and was able to downregulate the protein expression of iNOS, COX-2 and MMP-13. The production of inflammatory mediators such as NO and PGE2 were also reduced with an increase in dose-dependent manner in various cell lines. Inhibitory activity on the key enzyme xanthine oxidase was also observed in this study. In rat animal models, JMS-95E reduced the inflammatory responses such as acute swelling, chondrocyte degradation and pain section of paw edema in rat model. Molecular marker studies of inflammation demonstrated that JMS-95E significantly decrease PGE2 expression in MIA model. CONCLUSION: JMS-95E inhibited the inflammatory pathway leading to the production or expression levels of NO, iNOS, COX-2 and PGE2 in macrophage cells. In primary cultured rat chondrocytes iNOS and SW1353 MMP-13 expression were downregulated after JMS-95E treatment. For the in vivo study JMS-95E significantly reduced the paw volume of carrageenan-induced rat paw edema through each dose and significantly inhibited paw volume, counterweight the distribution of hind-paw weight bearing through the MIA model which means JMS-95E could promote recovery of the acute swelling and chondrocyte degradation of the ankle joints. The above results provided the multiple mechanism of JMS-95E in OA treatment of the scientific founding which supported the description of JMS in traditional use.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite , Animais , Masculino , Ratos , Anti-Inflamatórios/efeitos adversos , Carragenina , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/prevenção & controle , Inflamação/tratamento farmacológico , Metaloproteinase 13 da Matriz , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/efeitos adversos , Ratos Sprague-Dawley , Ratos Wistar , Medicamentos de Ervas Chinesas/farmacologia
11.
Front Pharmacol ; 13: 1026912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506588

RESUMO

With the prevalence of obesity and other components of metabolic syndrome, Non-alcoholic fatty liver disease (NAFLD) has become increasingly common. In recent years, much attention has been paid to various plant sources, hoping to find a treatment for NAFLD in plants. The Livsooth authentic herbal formula (LAH, ), a botanical drug formula combined with Puerariae lobatae radix, Lonicerae japonicae flos, Hoveniae semen, and Siraitiae fructus. This study used a network pharmacology approach to predict the potential mechanisms of LAH against NAFLD. Gene Ontology (GO) and KEGG pathway enrichment analyses have identified potential biochemical and signaling pathways. Subsequently, the potential mechanism of action of LAH on NAFLD predicted by network pharmacology analysis was validated in a high-fat diet (HFD)-induced NAFLD model in C57BL/6 mice. Our results demonstrated that LAH ameliorated hepatocyte steatosis in liver tissue by activating the AMPK pathway and decreasing serum triglycerides, low-density lipoprotein, glucose, and cholesterol. Besides, LAH increased the hepatic antioxidant enzymes activities, suggested that LAH improved oxidative stress markers in HFD induced NAFLD mice. In vitro experiments confirmed that the active component of LAH, puerarin, regulates lipid accumulation through the AMPK pathway. In conclusion, our study shows that network pharmacology predictions are consistent with experimental validation. LAH can be a candidate supplement for the prevention of NAFLD.

12.
Biology (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552336

RESUMO

SARS-CoV-2 infections are highly correlated with the overexpression of pro-inflammatory cytokines in what is known as a cytokine storm, leading to high fatality rates. Such infections are accompanied by SIRS, ARDS, and sepsis, suggesting a potential link between the three phenotypes. Currently, little is known about the transcriptional similarity between these conditions. Herein, weighted gene co-expression network analysis (WGCNA) clustering was applied to RNA-seq datasets (GSE147902, GSE66890, GSE74224, GSE177477) to identify modules of highly co-expressed and correlated genes, cross referenced with dataset GSE160163, across the samples. To assess the transcriptome similarities between the conditions, module preservation analysis was performed and functional enrichment was analyzed in DAVID webserver. The hub genes of significantly preserved modules were identified, classified into upregulated or downregulated, and used to screen candidate drugs using Connectivity Map (CMap) to identify repurposed drugs. Results show that several immune pathways (chemokine signaling, NOD-like signaling, and Th1 and Th2 cell differentiation) are conserved across the four diseases. Hub genes screened using intramodular connectivity show significant relevance with the pathogenesis of cytokine storms. Transcriptomic-driven drug repurposing identified seven candidate drugs (SB-202190, eicosatetraenoic-acid, loratadine, TPCA-1, pinocembrin, mepacrine, and CAY-10470) that targeted several immune-related processes. These identified drugs warrant further study into their efficacy for treating cytokine storms, and in vitro and in vivo experiments are recommended to confirm the findings of this study.

13.
ACS Biomater Sci Eng ; 8(4): 1532-1543, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35319182

RESUMO

Although energy-demanding, the surface modification of polytetrafluoroethylene (PTFE) for biomedical applications is mandatory to mitigate irreversible biofouling that occurs whenever PTFE comes into contact with biological fluids. Here, we propose to take advantage of the adhesive properties of dopamine (DA) and of the antifouling ability of various zwitterionic monomers (sulfobetaine methacrylate (SBMA), sulfobetaine methacrylamide (SBAA), sulfobetaine acrylamide (SBAA'), and 4-vinylpyridine propylsulfobetaine (4VPPS)) and form antifouling coatings by copolymerization on the surface of expanded PTFE membranes. This simple, low-energy, and one-step coating procedure arises in significant biofouling mitigation. All zwitterionic coatings led to important reduction of biofouling by red blood cell conentrate (88-94%), platelet conentrate (70-90%), whole blood (40-66%), or bacteria (83-96%). Also, it is shown that the interactions of polydopamine with ePTFE are stable even at high temperatures. However, the zwitterionic monomers are differently affected. While the performance of SBMA coatings decreased (as SBMA is prone to hydrolysis), those of SBAA, SBAA', and 4VPPS coatings were generally maintained. All in all, this study illustrates that efficient and stable antifouling zwitterionic coatings can be generated onto PTFE membranes for biomedical applications, without the use of conventional high-energy-demanding surface modification processes.


Assuntos
Incrustação Biológica , Dopamina , Incrustação Biológica/prevenção & controle , Dopamina/farmacologia , Fluorocarbonos , Metacrilatos , Politetrafluoretileno
14.
Biology (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671713

RESUMO

Predatory cone snails (Conus) developed a sophisticated neuropharmacological mechanism to capture prey, escape against other predators, and deter competitors. Their venom's remarkable specificity for various ion channels and receptors is an evolutionary feat attributable to the venom's variety of peptide components (conotoxins). However, what caused conotoxin divergence remains unclear and may be related to the role of prey shift. Principal component analysis revealed clustering events within diet subgroups indicating peptide sequence similarity patterns based on the prey they subdue. Molecular analyses using multiple sequence alignment and structural element analysis were conducted to observe the events at the molecular level that caused the subgrouping. Three distinct subgroups were identified. Results showed homologous regions and conserved residues within diet subgroups but divergent between other groups. We specified that these structural elements caused subgrouping in alpha conotoxins that may play a role in function specificity. In each diet subgroup, amino acid character, length of intervening amino acids between cysteine residues, and polypeptide length influenced subgrouping. This study provides molecular insights into the role of prey shift, specifically diet preference, in conotoxin divergence.

15.
Genes (Basel) ; 12(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34573366

RESUMO

Pigeon racing's recent upturn in popularity can be attributed in part to the huge prize money involved in these competitions. As such, methods to select pigeons with desirable genetic characteristics for racing or for selective breeding have also been gaining more interest. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for genotyping-specific genes is one of the most commonly used molecular techniques, which can be costly, laborious and time consuming. The present study reports the development of an alternative genotyping method that employs Kompetitive Allele Specific Polymerase Chain Reaction (KASP) technology with specifically designed primers to detect previously reported racing performance-associated polymorphisms within the LDHA, MTYCB, and DRD4 genes. To validate, KASP assays and PCR-RFLP assays results from 107 samples genotyped for each of the genes were compared and the results showed perfect (100%) agreement of both methods. The developed KASP assays present an alternative rapid, reliable, and cost-effective method to identify polymorphisms in pigeons.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Animais , Columbidae/genética , L-Lactato Desidrogenase/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Receptores de Dopamina D4/genética
17.
Talanta ; 231: 122362, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965028

RESUMO

A microfluidic colorimetric detection (MCD) platform consisting of a sliding hybrid PMMA/paper microchip and a smart analysis system is proposed for the convenient, low-cost and rapid analysis of human urine and whole blood samples. The sliding PMMA/paper microchip comprises a PMMA microfluidic chip for sample injection and transportation, a paper strip for sample filtration (urine) or separation (blood), and a sealed paper-chip detection zone for sample reaction and detection. In the proposed device, the paper-chip is coated with bicinchoninic acid (BCA) and biuret reagent and is then assembled into the PMMA microchip and packaged in aluminum housing. In the detection process, the PMMA/paper microchip is slid partially out of the housing, and 2 µL of sample (urine or whole blood) is dripped onto the sample injection zone. The chip is then slid back into the housing and the sample is filtered/separated by the paper strip and transferred under the effects of capillary action to the sealed paper-chip detection zone. The housing is inserted into the color analysis system and heated at 45 °C for 5 min to produce a purple-colored reaction complex. The complex is imaged using a CCD camera and the RGB color intensity of the image is then analyzed using a smartphone to determine the total protein (TP) concentration of the sample. The effectiveness of the proposed method is demonstrated using TP control samples with known concentrations in the range of 0.03-5.0 g/dL. The detection results obtained for 50 human urine samples obtained from random volunteers are shown to be consistent with those obtained from a conventional hospital analysis system (R2 = 0.992). Moreover, the detection results obtained for the albumin (ALB) and creatine (CRE) concentrations of 50 whole blood samples are also shown to be in good agreement with the results obtained from the hospital analysis system (R2 = 0.982 and 0.988, respectively).


Assuntos
Colorimetria , Polimetil Metacrilato , Testes Hematológicos , Humanos , Microfluídica , Smartphone
18.
Aquac Int ; 28(1): 169-185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32834683

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) or formerly known as early mortality syndrome (EMS) is an emerging disease that has caused significant economic losses to the aquaculture industry. The primary causative agent of AHPND is Vibrio parahaemolyticus, a Gram-negative rod-shaped bacterium that has gained plasmids encoding the fatal binary toxins Pir A/Pir B that cause rapid death of the infected shrimp. In this review, the current research studies and information about AHPND in shrimps have been presented. Molecular diagnostic tools and potential treatments regarding AHPND were also included. This review also includes relevant findings which may serve as guidelines that can help for further investigation and studies on AHPND or other shrimp diseases.

19.
ACS Appl Mater Interfaces ; 12(37): 41000-41010, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32822163

RESUMO

Expanded polytetrafluoroethylene (ePTFE) is one of the materials widely used in the biomedical field, yet its application is being limited by adverse reactions such as thrombosis when it comes in contact with blood. Thus, a simple and robust way to modify ePTFE to be biologically inert is sought after. Modification of ePTFE without high-energy pretreatment, such as immersion coating, has been of interest to researchers for its straightforward process and ease in scaling up. In this study, we utilized a two-step immersion coating to zwitterionize ePTFE membranes. The first coating consists of the co-deposition of polyethylenimine (PEI) and polydopamine (PDA) to produce amine groups in the surface of the ePTFE for further functionalization. These amine groups from PEI will be coupled with the epoxide group of the zwitterionic copolymer, poly(GMA-co-SBMA) (PGS), via a ring-opening reaction in the second coating. The coated ePTFE membranes were physically and chemically characterized to ensure that each step of the coating is successful. The membranes were also tested for their thrombogenicity via quantification of the blood cells attached to it during contact with biological solutions. The coated membranes exhibited around 90% reduction in attachment with respect to the uncoated ePTFE for both Gram-positive and Gram-negative strains of bacteria (Staphylococcus aureus and Escherichia coli). The coating was also able to resist blood cell attachment from human whole blood by 81.57% and resist red blood cell attachment from red blood cell concentrate by 93.4%. These ePTFE membranes, which are coated by a simple immersion coating, show significant enhancement of the biocompatibility of the membranes, which shows promise for future use in biological devices.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Dopamina/farmacologia , Escherichia coli/efeitos dos fármacos , Politetrafluoretileno/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Dopamina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Politetrafluoretileno/química , Propriedades de Superfície
20.
Vet Microbiol ; 247: 108779, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768225

RESUMO

Pigeons (Columba livia) have been associated with humans for a long time now. They are raised for sport (pigeon race), exhibition (display of fancy breeds), food, and research. Most of the pigeons kept are Racing Homers, trained to compete in the pigeon race. Other breeds, such as Rollers, Nose Divers, Doneks are bred for their aerial abilities. Incorporation of a good preventive medicine program is one of the most critical factors in averting infectious diseases in pigeon flocks. This review summarizes the common bacterial, viral, and parasitic infections in pigeons. The different clinical signs, symptoms, diagnostic strategies, prevention, and treatments were described in this review. Current researches, molecular diagnostic assays, and treatment strategies such as vaccines and drug candidates were included. The information found in this review can provide insights for veterinarians and researchers studying pigeons to develop effective and efficient immunoprophylactic and diagnostic tools for pigeon diagnosis and therapeutics.


Assuntos
Infecções Bacterianas/veterinária , Doenças das Aves/diagnóstico , Columbidae/microbiologia , Columbidae/parasitologia , Columbidae/virologia , Doenças Parasitárias em Animais/diagnóstico , Viroses/veterinária , Animais , Antibacterianos/uso terapêutico , Antiparasitários/uso terapêutico , Antivirais/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Doenças das Aves/microbiologia , Doenças das Aves/parasitologia , Doenças das Aves/virologia , Doenças Parasitárias em Animais/tratamento farmacológico , Vacinas Virais/administração & dosagem , Viroses/diagnóstico , Viroses/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...